skip to main content


Search for: All records

Creators/Authors contains: "McCarter, Margaret"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polar vortices in oxide superlattices exhibit complex polarization topologies. Using a combination of electron energy loss near-edge structure analysis, crystal field multiplet theory, and first-principles calculations, we probe the electronic structure within such polar vortices in [(PbTiO 3 ) 16 /(SrTiO 3 ) 16 ] superlattices at the atomic scale. The peaks in Ti $$L$$ L -edge spectra shift systematically depending on the position of the Ti 4+ cations within the vortices i.e., the direction and magnitude of the local dipole. First-principles computation of the local projected density of states on the Ti $$3d$$ 3 d orbitals, together with the simulated crystal field multiplet spectra derived from first principles are in good agreement with the experiments. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The manipulation of charge and lattice degrees of freedom in atomically precise, low‐dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO3/PbTiO3/SrTiO3trilayer is investigated. By utilizing a combination of transmission electron microscopy, synchrotron‐based X‐ray diffraction, and phase‐field modeling, the phase transition as a function of layer thickness (number of unit cells) demonstrates how the vortex state emerges from the ferroelectric state by varying the thickness of the confined PbTiO3layer. Intriguingly, the vortex state arises at head‐to‐head domain boundaries in ferroelectrica1/a2twin structures. In turn, by varying the total number of PbTiO3layers (moving from trilayer to superlattices), it is possible to manipulate the long‐range interactions among multiple confined PbTiO3layers to stabilize the vortex state. This work provides a new understanding of how the different energies work together to produce this exciting new state of matter and can contribute to the design of novel states and potential memory applications.

     
    more » « less
  4. Abstract

    Understanding and ultimately controlling the large electromechanical effects in relaxor ferroelectrics requires intimate knowledge of how the local‐polar order evolves under applied stimuli. Here, the biaxial‐strain‐induced evolution of and correlations between polar structures and properties in epitaxial films of the prototypical relaxor ferroelectric 0.68PbMg1/3Nb2/3O3–0.32PbTiO3are investigated. X‐ray diffuse‐scattering studies reveal an evolution from a butterfly‐ to disc‐shaped pattern and an increase in the correlation‐length from ≈8 to ≈25 nm with increasing compressive strain. Molecular‐dynamics simulations reveal the origin of the changes in the diffuse‐scattering patterns and that strain induces polarization rotation and the merging of the polar order. As the magnitude of the strain is increased, relaxor behavior is gradually suppressed but is not fully quenched. Analysis of the dynamic evolution of dipole alignment in the simulations reveals that, while, for most unit‐cell chemistries and configurations, strain drives a tendency toward more ferroelectric‐like order, there are certain unit cells that become more disordered under strain, resulting in stronger competition between ordered and disordered regions and enhanced overall susceptibilities. Ultimately, this implies that deterministic creation of specific local chemical configurations could be an effective way to enhance relaxor performance.

     
    more » « less